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In some situations, the available resources are adequate to carry out the alternative operating plan 
selected. In others, however, this is not true. For example, a machine only has a certain amount of capacity. 
If that capacity is entirely used by one product, it cannot be used for another. Similarly, a factory building 
has room for only so many machines. In these situations, there are constraints on the uses of resources.

Linear programming provides a model for solving problems that involve several constraints. In it, a series 
of linear mathematical relationships is developed. The first, called the objective function, is the quantity 
to be optimized. This is usually a formula for differential costs, which the model will minimize, or one for 
differential income, which is to be maximized. The other statements express the constraints of the situation.

Example. A company makes two products, each of which is worked on in two departments. Department 
1 has a capacity of 500 labor-hours per week; Department 2 has 600 labor hours. The labor requirements of 
each product in each department are:

Labor Hours per Unit

Product A Product B

Department 1 . . . . . . . . 5.0 2.5

Department 2 . . . . . . . . 3.0 5.0

As many units of B as can be made also can be sold, but a maximum of 90 units of A can be sold per 
week. The unit contribution (i.e., unit price minus unit variable costs) is $2 for A and $2.50 for B. How many 
units of each should be made in order to maximize total contribution?

The problem can be expressed mathematically as follows:

Maximize: C = 2A + 2.5B (maximize contribution, the objective function)

Subject to: 5A + 2.5B ≤ 500
3A + 5B ≤ 600
A ≤ 90
A ≥ 0, B ≥ 0

(Department 1 capacity constraint)
(Department 2 capacity constraint)
(Product A sales constraint)
(A negative number of units cannot be made)
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